» Публикации
Применение производной к решению математических задач практического содержания (Останькович Т.Э.)


Разработка  урока ( 2*45 мин.)

в 10 классе с профильным изучением  математики  по  теме:

«Применение производной к решению математических задач

практического содержания.»

Останькович Татьяна Эдгаровна- учитель высшей категории.

Цель:    формирование  практических  навыков  применения теоретических  знаний  и общеучебных компетенций учащихся.

Задачи:

·                  познавательный аспект- расширение общего кругозора школьников,  стимулирование познавательной деятельности, умение находить и обрабатывать информацию;

·                  учебный аспект- активизация мыслительной деятельности учащихся при решении задач прикладного характера, алгоритмизация деятельности;

·                  воспитательный аспект- развитие умения работать в команде, активно слушать, уважать чужое мнение, формировать потребности в самовыражении и научном творчестве.

Математические задачи с практическим содержанием – это такие задачи, которые связаны с                 применением математики в технике, химии, экономике, медицине, экологии, а так же в быту. Мы рассмотрим задачи, которые можно решить с помощью производной . Эти задачи не совсем обычны как по форме изложения, так и по применяемым методам решения.

Одним из важнейших понятий математического анализа является производная функции. Производная характеризует скорость изменения функции по отношению к изменению независимой переменной. В геометрии производная характеризует крутизну графика, в механике – скорость неравномерного прямолинейного движения, в биологии – скорость размножения колонии микроорганизмов, в экономике – отзывчивость производственной функции (выход продукта на единицу затрат), в химии – скорость химической реакции.

В приложениях математики к решению конкретных задач приходится иметь дело с величинами, числовые значения которых получены путем измерений и, следовательно, точное их значение неизвестно. Если исходные данные содержат погрешности измерений, то применение точных методов измерения не целесообразно. Для упрощения и облегчения вычислений в таких случаях лучше использовать приближенные методы. Теоретической основой одного из простейших приемов приближенных значений вычислений является понятие дифференциала. Приближенное значение приращение функции называется дифференциалом функции и обозначается dy, причем dy=y’(x)dx.

Среди многих задач, решаемых с помощью производной, наиболее важной является задача нахождения экстремума функции и связанная с ней задача нахождения наибольшего (наименьшего) значения соответствующих функций. Рассмотрим некоторые из них. ( Образцы задач может приводить как сам учитель, так и заранее подготовленные ученики).

Задача №1

Докажите, что уравнение  3x5 – 25x3 + 60x + 15 = 0 имеет только один действительный корень.

Решение:

Рассмотрим функцию f(x) = 3x5 – 25x3 + 60x + 15 = 0 и найдем её интервалы монотонности. Имеем: f’(x) = 15x4 – 75x2 + 60 = 15(x + 2)(x + 1)(x - 1)(x - 2).

Производная f’(x) обращается в нуль в четырех точках: -2, -1, 1, 2. Эти точки разбивают числовую прямую на пять промежутков: (- ∞; -2), (-2; -1), (-1; 1), (1; 2), (2; +∞).

На каждом из указанных промежутков производная сохраняет постоянный знак. Отсюда заключаем, что на каждом из этих промежутков функция y = f(x) монотонна, т.е. или возрастает или убывает. Тогда график функции на каждом из указанных промежутков может пересекать ось абсцисс не более∞ чем в одной точке. Это значит, что функция y = f(x) на каждом из рассматриваемых промежутков может иметь не более одного корня, причем корни функции могут быть в тех и только тех промежутках, на концах которых функция имеет разные по знаку значения. Имеем

lim f(x) = - ∞, f(- 2) < 0, f(- 1) < 0,  f(1) > 0, f(2) > 0, lim f(x) = +∞

x → - ∞                                                                      x → +∞

 

f(1) > 0, f(2) > 0, lim f(x) = +∞

x → + ∞

Так как f(x) имеет различные знаки только на концах промежутка (-1; 1), то заданное уравнение имеет лишь один действительный корень, лежащий внутри этого интервала.

Задача №2.  При извержении вулкана камни горной породы выбрасываются перпенди-  кулярно вверх с начальной скоростью 120 м/ с. Какой наибольшей высоты достигнут камни, если сопротивлением ветра пренебречь?

Решение: Вещество выбрасывается перпендикулярно вверх. Высота камня h, функция времени-

h(t) = Vо t -1/2gt2 .Откуда следует: h(t)= v(t)= vо–gt. Следовательно, 0= 120-9,8t и t≈13 сек. Тогда h=745м, т.е. камни горной породы достигают уровня 720 м от края вулкана.

 

Задача №3. Нагруженные сани движутся по горизонтальной поверхности под действием силы  F, приложенной к центру  тяжести. Какой угол α должна составлять линия действия силы F с горизонтом, чтобы равномерное движение саней происходило под действием наименьшей силы? Коэффициент трения саней о снег равен к.

Решение: Разложим силу F на горизонтальную и вертикальную составляющие. Сила нормального движения саней и вертикальной составляющей силы  F:N=P-F sinα, поэтому сила трения  F тр =kN=

=k(P-Fsinα). Сани будут двигаться равномерно при условии компенсации горизонтальных сил:

Fx=Fтр., то есть Fcosα=k (P-Fsinα). Далее находим силу   как функцию угла α:

F(α)= kP/(ksinα+cosα).   F′(α) =kP(sinα-kcosα)/(ksinα+cosα)2. Тогда F′(α)=0 при k=tgα.

Определим знак второй производной в этой точке…

 

Из  решения этой задачи можно сделать практический вывод: когда необходимо везти на санях груз по дороге с большим коэффициентом трения, нужно тянуть сани за короткую веревку. Если же коэффициент  трения мал, веревка должна быть длинной.

 

Задача№4. Расход горючего легкового автомобиля (литр на 100 км) в зависимости от скорости х км/ч при движении на четвертой передачи приблизительно описывается функцией

f(x)=0,0017х-0,18х+10,2; х>30. При какой скорости расход горючего будет наименьший? Найдите этот расход.

Решение:  Исследуем расход горючего с помощью производной: f′(х)=0,0034х-0,18.Тогда f′(х)=0 при

х≈53. Определим знак второй производной в критической точке: f′′(х)=0,0034>0, следовательно, рас-

ход горючего при скорости 53 км/ч будет наименьшим. f(53)≈5,43 л.

 

Задача№5. Оборот предприятия за истекший год описывается через функцию  U(t)=0,15t2 – 2t2 + 200, где t –месяцы,  U-миллионы. Исследуйте оборот предприятия.

Решение. Исследуем оборот предприятия с помощью производной:U′(t)=0,45t2 - 4t  U′′(t)=0,9t-4

U″′(t)=0,9. Момент наименьшего оборота при U(t)=0, т.е.при  t=8,9.Наименьший оборот был на девятом месяце. Первая производная показывает экстремальное изменение оборота. Из U(t)=0 следует t=4,4.Так как U″′(t)>0, то на пятом месяце имеется сильное снижение оборота. Точки перегиба важны в экономике, так как именно по ним можно определить, в какой конкретно момент произошло изменение.

Так, например, по решению предложенной задачи можно сделать выводы:

1.В начале исследуемого периода у предприятия было снижение оборота;

2.Предприятие пыталось выйти из этого состояния и для этого использовало определенные средства.

На пятом месяце ( точка перегиба) что-то было предпринято и предприятие стало выходить из

кризиса, а на девятом месяце стало набирать обороты.

 

Задачи из биологии и химии

Биологический смысл производной.  Пусть зависимость между числом особей популяции микроорганизмов у и временем t её размножения задана уравнением: у=p(t). Пусть ∆t-промежуток времени от некоторого начального значения t до t+∆t. Тогда у+∆у=p(t+∆t)- новое значение численности популяции, соответствующее моменту t+∆t, а  ∆y+p(t+∆t)-p(t)-изменение числа особей

организмов.

Химический смысл производной. Пусть дана функция m=m(t),где m-количество некоторого вещества, вступившего в химическую реакцию в момент времени t. Приращению времени ∆t будет соответствовать приращение ∆m  величины  m. Отношение ∆m/∆t- есть средняя скорость химической реакции за промежуток времени ∆t. Предел этого отношения при стремлении t∆ к нулю- есть скорость химической реакции в данный момент времени .

 

Р а с с м о т р и м   н е с к о л ь к о   з а д а ч

 

Задача №6. Зависимость между количеством х вещества, получаемого в результате некоторой

химической реакции и временем t выражается уравнением  Х=А(1+е) Определите скорость химической реакции в момент времени t.

 

Задача №7. Закон накопления сухой биомассы у винограда сорта Шалса определяется уравнением  y=0,003x-0,0004x  , где x- число дней от распускания почек, y-накопление биомассы в кг на 1 куст. Равенство отражает зависимость величин x и y как средний результат массовых

наблюдений. Выясните, как изменится сухая биомасса при изменении от 50 до 60 дней.

 

Задача №8. Реакция организма на введенное лекарство может выражаться в повышении кровяного давления, уменьшения температуры тела, изменении пульса или других физиологических показателей. степень реакции зависит от назначенного лекарства, его дозы. Предположим, что Х обозначает дозу назначенного лекарства, У - функция степени реакции. У=f(x)=x2(a-x) ,где а - некоторая положительная постоянная. При каком значении Х реакция максимальна?

Решение: 0<x<а. Значит f′(x)=2ax-3x2  . Тогда  f′(x)=0 при x=⅔ а. В этой точке f″(⅔ а)= -2а<0, то х=⅔-а - тот уровень дозы, который дает максимальную реакцию.

Точки перегиба важны в биохимии, так как они определяют условия, при которых некоторая величина, например скорость процесса, наиболее ( или наименее) чувствительна к каким-либо

воздействиям.

 

Предлагается творческое задание (при наличии времени на уроке, если имеем в наличии сдвоенные уроки. Если такая возможность отсутствует, творческое задание выполняется дома).

Задача №9. За последние 10 лет численность грызунов в городе Н выросла в 5 рази достигла 1

миллиона особей: по одной крысе на каждого жителя. За год одна пара крыс способна воспроизвести 50 штук себе подобных. По словам эпидемиологов, крысы являются переносчиками многих болезней – чумы, бешенства, энцефалита. Составьте задачу по приведенным данным и решите её.

 

Задача №10. Зависимость суточного удой У в литрах от возраста коров Х в годах определяется

уравнением У(х)= -9,3+6,86х-0,49х , где х>2.Найдите возраст дойных коров, при котором суточный удой будет наибольшим.

Подведение  итогов.

 

[ · Скачать весь документ (60 КБ) ] 28.08.2012, 16:07

Категория: Публикации | Добавил: Администратор
Просмотров: 14004 | Загрузок: 1394 | Рейтинг: 0.0/0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]